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CIELO-Iron collaboration
BNL, CNDC, IAEA, IRM, 
JSI, LANL, ORNL, RPI, 
IRSN 
§ Exp. data analysis: CNDC 
§ Resonance range: ORNL & IRSN 

& BNL & IAEA  
§ Fast neutron range: EMPIRE 

(BNL, IAEA) 
§ File assembly: IAEA, BNL  
§ Testing: IAEA, RPI, BNL, LANL, 

JSI
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Covariances in 56Fe Resonance Region

§ Resonances from Fröhner’s evaluation were adopted: 
covariances on res. parameters have been lost 

§ Capture background in the 24 keV resonance window 
§ Instead of re-fitting resonances: more pragmatic approach 
§ Covariances for RRR were generated using EMPIRE’s 

resonance module: Matching resonance parameters in 
evaluation with respective uncertainties in Atlas of 
Neutron Resonances 

§ Uncertainties of negative res. parameters were set at the 
values that reproduce unc. of the thermal constants 

§ Strong correlation was assumed among the Γ𝛾 widths  
§ MF=32 g NJOY g MF=33
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Background in (n,g) covariances
§ Uncertainties for total and elastic were reasonable  
§ Capture uncertainties systematically low  

• in the capture window, where the capture background was added 
• near the top of the resonance region: suspicion of missing resonances 

§ “Background covariance” added to the MF=33 covariance
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Uncertainties in fast neutron range

§ Uncertainties relative to averaged cross sections: do not 
aim to cover fluctuations 

§ Covariances were obtained from Kalman: experimental 
uncertainties and model constraints 

§ Most reliable experimental data sets selected 
§ 1.8% systematic uncertainty square-added to the reported 

statistical uncertainties for Abfalterer's total data 
§ Experiment weights normalized so that 𝜒2 ≈ 1 for each 

experiment:  
• Account for unknown systematic uncertainties 
• Eliminate impact of asymmetry related to very different number of 

points 

§ Experimental correlation set to 45%
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Uncertainties in fast neutron range
§ Open initial model parameter uncertainties (100%) 

• Restrict initial model parameter uncertainties if not restricted by 
exp. data in the first Kalman run 

§ For (n,p):  
• Use IRDFF uncertainties as experimental (we could use full IRDFF 

covariance) 
• Increase IRDFF data weight to force reduction of final uncertainties 

to agree with IRDFF 

§ Covariances estimated for MT=1, 2, 4, 5, 16, 102, 103 (no 
107!, no angular distr.) 

§ Cross-correlations calculated but not formatted 
(full covariance matrix, including all residue production 
cross sections, is 86 Mb!) 

§ Improvement since 𝛽5: Increased number of varied model 
parameters (more degrees of freedom at high energies)
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Comparison with 𝛽5
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Comparison with 𝛽5
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Comparison with IRDFF
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Uncertainties at high energies
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Covariance plots
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Correlation for 56Fe(n,total)
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Correlation for 56Fe(n,elas)

10-3 10-2 10-1 100 101 102

Energy [MeV]

10-3

10-2

10-1

100

101

102

E
n
e
rg

y 
[M

e
V

]

-100

-50

 0

 50

 100



Covariance plots
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Correlation for 56Fe(n,γ)
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Covariance plots
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Correlation for 56Fe(n,p)
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Uncertainties “To do” list

§ Complete covariances for minor isotopes 
§ Format and include cross-reaction correlations for the 

considered reaction channels 
§ Observations:  

• Resulting uncertainties are very reasonable thanks to the modified 
experiment weights 

• If model parameters are well constrained by the experimental data 
the result does not depend on the initial parameter uncertainty 

• The procedure is relatively solid - modification of experiment 
weights has limited effect on the uncertainties, since covariance of 
model parameters that determines cross section covariances, is 
constrained also by other experimental data 

• It is, however, necessary to use global uncertainty estimates to 
constrain those model parameters that are not sufficiently 
constrained by exp. data
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Conclusions

§ CIELO collaboration led to a new set of evaluations for 
main iron isotopes, with consistent covariances 

§ RRR needed a “covariance background”, consistent with 
the capture cross section background 

§ Reasonable uncertainties for all reactions in both 
resonance and fast regions 

§ Uncertainties are stable regarding changes in model 
parameters 

§ Reproducible method 
§ Changed covariances since 𝛽5: they were good before 

but are better and more reasonable now 
§ Minors: Same method for fast; not so simple for 

resonances
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